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                                                  MODERN PHYSICS 

1) State Planck’s quantum hypothesis. 
   Max Planck postulated  the following assumptions. 

       i) the atomic oscillator in a body cannot have any arbitrary amount of energy. They have only 

discrete units of  energy En = n hν where n is quantum number that can take only positive integer 

values  n = 1, 2, 3, ... ;   ν is the frequency of the oscillator and h is Planck’s constant  h = 6.62 x  10 
--34  Joules-sec. This equation shows that the oscillator energy is quantized. 

       ii) The atoms absorb or emit energy when they move from one quantum state to the other in 

indivisible discrete units.  The amount of radiation  energy  in each unit is called a ‘ quantum ‘ of 

energy of radiation of that frequency. Each quantum carries an energy E = hν 

   The energy of each quantum is the smallest quantity of energy of radiation of that frequency. The 

energy of an oscillator changes only by multiples of hν. The hypothesis that radiation energy is 

emitted or absorbed in a discontinuous manner and in the form of quantum is called ‘Planck’s 

hypothesis’ . 

 

2) State the de-Broglie concept of matter waves  
Electromagnetic radiation displays a dual character, behaving as a wave and a particle.  Louis de 

Broglie in 1923 extended the wave-particle dualism to all fundamental particles such as electrons, 

protons, neutrons, atoms and molecules etc.. 

      According to de Broglie hypothesis, a moving particle is associated with a wave which is 

known as de Broglie wave or a matter wave. These waves are associated with particles like 

electrons , protons, neutrons etc. The wavelength of the matter wave is given by  

 = h / p = h / mv 

where  m is the mass of the particle, v its velocity and p its momentum. h is called Planck’s 

constant given by  6.63x 10 – 34  J-sec. 

     Considering the Planck’s quantum theory of radiation, the energy of a photon (quantum) is given 

by   E = h   = h c /    ……………………………………………..(1)   

where  c is the velocity of light,  is the frequency and   its wavelength. The radiation interacts with 

matter in the form of photons or quanta. Thus the radiation  behaves like a particle.. 

     According to Einstein’s mass-energy relation E = m c2    ………………..(2) 

From eqns (1) and (2) ,   mc2 = h c /    or       = h / mc  = h / p 

p is the momentum associated with the photon.    If we consider the case of a material particle of 

mass m and moving with a velocity v  i.e., momentum mv, then the wavelength associated with this 

particle is 

                = h / p =  h/ mv                                                                                              ___     

If E is the kinetic energy of the material particle , then E = mv 2 / 2 = p2 / 2m or  p =  2mE 

Therefore the de Broglie wavelength  of a material particle moving with momentum p is given by                                             

                            _____ 

           =     h /  2mE 

In the case of electrons  accelerated by a potential V volts from rest to velocity v , the E = Ve      or  

                              ________                             

                   = h /  2 m0Ve 

Because of the smallness of h, we observe the wave nature only for particles of atomic or nuclear 

size . For ordinary objects  the de Broglie wavelength is very small and so it is not possible to observe   

wave nature of these macroscopic objects           __. 

For electrons, the de-Broglie wavelength   = 12.26 /   V    oA 
.  

3) Write a note on de-Broglie concept of matter waves  
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Electromagnetic radiation displays a dual character, behaving as a wave and a particle.  

Louis de Broglie in 1923 extended the wave-particle dualism to all fundamental particles such as 

electrons, protons, neutrons, atoms and molecules etc.. 

      According to de Broglie hypothesis, a moving particle is associated with a wave which is known 

as de Broglie wave or a matter wave. These waves are associated with particles like electrons , 

protons, neutrons etc. The wavelength of the matter wave is given by  

 = h / p = h / mv 

where ‘m’ is the mass of the particle, v its velocity and p its momentum. h is called Planck’s constant 

given by  6.63x 10 – 34  J-sec 

Because of the smallness of h, we observe  wave nature for only  particles of atomic or nuclear size. 

For ordinary objects  the de Broglie wavelength is very small and so it is not possible to observe   

wave nature of these macroscopic objects. 

Properties of de-Broglie waves or  matter waves 
   i) Matter waves consists of group of  waves or a wave packet each having  the wavelength  , is 

associated with the particle. This  group travels with the particle velocity v   

   ii) Each wave of the group of matter waves travels with a velocity known as phase velocity of the 

wave vphase = c2 / v is greater than c  

   iii) Lighter is the particle, greater is its wavelength. Smaller   is   the velocity,  greater is the  

wavelength   associated   with it.   When v = 0  then     =    which  means  that  the  wave       

becomes   indeterminate. This shows that  matter   waves  are   generated  by  the motion of  the   

particles. 

   iv) The wave  and particle aspects of a moving body can never appear together in the same        

    experiment 

   v) The wave nature of matter introduces an uncertainty in the location of the particle  because the 

wave is spread out in space. 

 

      5) State and explain Heisenberg’s uncertainty principle   
The concept of dual particle and wave nature of matter leads to another important principle called 

Heisenberg’s Uncertainty principle.  In wave mechanics the particle is described in terms of a wave 

packet and the particle may be found any where with in the wave packet at a given time.          

The particle is located within the region  x, the spread in the wave packet. Therefore there is an 

uncertainty x   in the position of the particle. Further the wave packet is constituted by waves having 

a range of wavelengths.    As the   momentum   of the particle   is related to the  wavelength ( p = h / 

) , there arises an uncertainty in momentum p. The spread in wavelength   is related to the  

spread in dimension  x.  The two uncertainties are interrelated because the spread in momentum 

depends on the spread in the length of the wave packet. 

                             
The  narrower the wave packet, the more precisely a particle position can be specified. .  However, 

the wavelength of the wave in a narrow packet is not well defined. This means that   the particle’s 

momentum p = h / is not a precise quantity. On the other hand, the uncertainty in the location of the 

particle is more in a wide wave packet but  has a clearly well defined wavelength. The momentum 

that corresponds to this wavelength is therefore a precise quantity   
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     Thus the certainty in position involves uncertainty in momentum and conversely 

certainty in momentum involves uncertainty in position. Thus we have the uncertainty principle 

proposed by Heisenberg in 1927. It is one of the most significant physical laws. 
Heisenberg’s Uncertainty Principle:   It states that it is impossible to make simultaneous 

determination of the position and momentum of a particle precisely and that the product of the 

uncertainties in determining the position and momentum of a particle is approximately equal 

to Planck’s constant h/2. 

Thus if  x is the uncertainty in the determination of the position , and p is the uncertainty in 

the momentum, then  according to Heisenberg’s uncertainty principle 

                    x . p  h/ 2            ( h = 6.63x10 –34 J-sec ) 

 Similarly, if we wish to measure the energy E emitted during the time interval   t in an atomic 

process, then  

                    E .t   h/ 2 =  1.05 x 10 --34 J.sec 

Thus, it is impossible to make a simultaneous determination of the energy and the time precisely and 

the product of the uncertainties in energy and time is greater than or equal to h  

 

6) Derive time independent and time-dependent Schrodinger wave equation  
 Schrodinger’s time independent wave equation : 

According to de Broglie theory, a moving particle of mass m is always associated with a wave whose 

wavelength  is given by  = h /mv. If the particle has wave properties, it is expected that there should 

be some sort of wave equation which describes the behaviour of the particle. Consider a system of 

stationary waves associated with a particle. Let x,y,z be the coordinates of the particle and  , the 

wave displacement for the de Broglie wave at any time t. The classical differential equation of a wave 

motion is  

  t =   v2(   x +   y +   z ) = v 2  2   ………………(1) 

where 2 = x + x + x  is a Laplacian operator and v is the velocity of the particle The 

solution of Eqn (1) gives   as a periodic displacement in terms of time t 

     ( x,y,z,t )  =  0 (x,y,z ) e – i   t   ..............................                (2) 

where 0 (x,y,z )  is the spatial dependent part and e – i   t  is the time dependent part of the wave  

function . 0 (x,y,z )   gives the amplitude at the point considered and = 2  υ  is the angular frequency 

of the matter wave   

Eqn (2) can be expressed as    ( r , t )  =  0 ( r  ) e – i   t 

In a time independent Schrodinger eqn, the P.E of a particle does not depend explicitly on time. It 

means that the forces that act upon the particle and thereby the potential energy V changes with 

position of the particle only. In such cases,. time parameter t is eliminated from  the equation and the 

resultant equation is called time independent wave equation 

Differentiating twice with respect to t 

   t 2  =  -- 2  0 ( r  ) e – i  t   =  -- 2   

Substituting the value of     t   in Eqn (1) , we have 

  x +   y +   z + (2 / v 2)  = 0 ……………………(3) 

But    = 2  υ  = 2  v/        Hence    /v = 2 /  ………………….(4) 

Substituting the value of  / v = 2 /     in    Eqn (3) , we have 

  x +   y +   z + (42 / 2)  = 0       ………………..(5) 

From de-Broglie relation ,a particle of mass m moving with a velocity v is associated with wave 

whose wavelength     = h / mv 

Eqn (5) can be written as    x +   y +   z + (42 m2v2  / h2) = 0 

or          + (42 / h2) m2 v2  = 0       ………………………………..(6) 

If  E and V are the total and potential energy of the particle respectively, then its  

     K.E =  ½ mv2 = E –V 



 4 

       m2 v2 = 2m (E -V ) 

Substituting this in Eqn (6) 

       + (42 / h2) 2m (E -V )   = 0   

or    + ( 82 m / h2) (E -V )   = 0    ………………………………..(7) 

Eqn (7) is known as Schrodinger time independent wave equation. 

 Substituting h = h/ 2 .   Eqn (7) is       + (2 m / h2) (E -V )   = 0 

. 

For a free particle , potential energy V = 0. Hence the Schrodinger’s time independent  wave 

equation for a free particle can be expressed as      

                    + ( 82 mE / h2 )    = 0 

Schrodinger time - dependent wave equation: 
In time dependent Schrodinger wave Eqn., the P.E of a moving particle is both a function of time as 

well as the position of the particle. The Schrodinger time dependent wave equation may be obtained 

from Schrodinger time independent wave Eqn  by eliminating E. 

Differentiating  ( r , t )  =  0 ( r  ) e – i   t   with respect to t 

( / t )  = --  i  0 ( r  ) e – i   t  = -- i ( 2  υ  )  = --  ( 2  i υ  )  

or  ( / t) = -- ( 2  i E / h)         = -- ( i E / h )        (since E = h υ  ) 

or     E =  -- (h / i ) ( /t) = (i2 h /i ) ( /t ) = i h ( /t ) 

Substituting the value of  E  in the Schrodinger’s time independent wave equation, we get 

  + (2 m / h2 )  i h ( /t) --V  = 0 

           = -- (2 m / h2 )  i h ( /t ) --V = 0 

 -( h2/ 2m )  + V =   i h( /t)  ……   Schrodinger time-dependent Eqn   … .(8) 

Eqn (8) can be written as     

(-- h2/ 2m )  + V =   i h( /t) 

 or  H  = E …………………………………………..(9) 

where  H =   (-- h2/ 2m )  + V is called the Hamiltonian operator and E = i h ( /t) 

Eqn (9) represents the motion of a material particle in terms of Hamiltonian operator 

 

7) Write the physical significance  the wave function  
Schrodinger  introduced a quantity ( x, t) that he called a  ’wave function’.  The varying quantity 

that describes a matter wave is called the ‘wave function’ (x ,t) 

      The wave function  ( x , t )  = 0 e
 - i  t  has no direct physical meaning since ( x , t ) is a 

complex quantity.. The physical interpretation of the wave function was given the German physicist 

Max Born. The square of the absolute value of the wave function 2  or     (   is the 

complex conjugate of   ) is called the probability density. The product       is a measure of 

the probability of finding the particle at that point at that time . 

                    P (x) =     = 2 

Even though the wave function   (x,t)    is usually complex, the probability density will always 

be a real number ( positive or zero ). A large value of 2 means a strong possibility of the 

particle’s presence while a small value of  2  means a slight possibility of its presence.  As long 

as  2   0, there is a definite chance of the presence of the particle.dx gives probability that 

the particle will be found between  x and x+dx               

+ 

     dV = 1       is called the normalization condition. It  means  that the particle     

     --                             exists    some where at all times in the universe 

           + 

  If           dV = 0,  then the particle does not exist 

          −                             
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Besides being normalisable, the wave function should have the following properties:. 

i)    must be single valued since  can have only one value at a particular place   

      and time   

ii)   and its partial derivatives   /x, /y   and  /z must be continuous 

iii)   must be finite for all values of x,y and z   

 

8) Give the quantum mechanical treatment of a particle in a box and hence obtain   

the expressions for energy eigen values and eigen functions of the particles . 
 Let us consider the application of Schrodinger’s equation for a particle that is confined to a certain 

region of space instead of being able to move freely ( free particle but confined to certain region of 

space ) 

Consider a particle of mass  m that can move  only along the x-axis and bounces back and forth 

between the walls of a box. We shall assume that the walls of the box are infinitely hard, so the 

particle does not lose energy each time it strikes a wall . 

                                             
       The particle position at any instant is given by 0 x  L and the box is supposed to have walls of 

infinite height at x = 0 and x = L. The walls of the box are infinite in height and rigid that the particle 

cannot penetrate or escape from the box. Since the particle is a free particle, the potential energy of 

the particle can be assumed to be zero between x = 0 and x = L. and infinite at x = 0 and x = L.. This 

situation is called ‘particle in a box’. 

 In terms of the boundary conditions imposed by the problem, the potential energy function V is 

       V = 0     for  0  x  L 

Since the barrier or wall is infinitely tall, the particle cannot penetrate a wall. In such a case, the 

particle can rattle back rebounding from the wall. In quantum terms, the wave function  (x)   is zero 

at the walls and at all points beyond the walls signifying that the probability of finding the particle in 

those locations is zero. 

       (x) = 0 for x    0 and x  L 

Now we have to find out the magnitude of   between x = 0 and x = L within the box.. The 

Schrodinger’s  Eqn in one dimension is 

  d / dx2  + ( 82 m / h2) (E - V )   = 0    ……………………………..(1) 

Within the box, the potential energy V = 0 and the Schrodinger’s  Eqn becomes 

         d / dx2  + (82 m / h2) E   = 0  or  d / dx2  + ( 2m / h2) E   = 0………………(2) 

This is of the form    d / dx2  +  k2  = 0 and the general solution of this equation is  

          A sin kx + B cos kx  

where A and B are the constants which are to be evaluated using the boundary conditions imposed in 

the problem . The value of  k2 = 82 m E / h2  and  k = 2mE/ h.  

The solution to Eqn (2) is      ____                               ____  

                    (x) = A  sin ( 2mE / h )x  + B  cos ( 2mE / h )x    …………………..(3) 

This solution is subject to the boundary conditions imposed in the problem; 

(x) = 0 for x = 0 and for  x = L 

When x = 0 ,the first term on  RHS is zero and the second term reduces to B since cos 0 =1. This 

yields B = 0 . Thus Eqn (3) reduces to 

                                           ____ 

                (x) = A  Sin ( 2mE / h )x 

         ( x) will be zero at x = L and the term on RHS will be zero only when 

                     ____ 
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                 ( 2mE/ h ) L = n           n =1,2,3    …                   (4) 

This result comes about because the sine of the angles  2, 3 ,4  are all zero 

Eigen values  and eigen functions of particle in a box: 

From Eqn (4) , it is clear that the energy of the particle can have only certain values. These eigen 

values constitute the energy of the particle of the system.  

The energy eigen values of the particle in a box are  

  En = n2 2 h2 / 2mL2  = n2  h2 / 8mL2               n = 1,2,3,…..            ………..(5) 

Since n  can take only integer values, the energy is quantized.. The lowest energy state E0 corresponds 

to n =1.  

So E0 =   2 h2 / 2mL2  or E0 =  ( h2 / 8mL2 ). This is called zero point energy  
         The allowed values of the energy states are E1= 4E0,   E2 = 9E0, E3 =16 E0  and so on 

En depends on the values on n.  Each value of En is called ‘energy eigen value’ or proper value. Since 

the energy is purely kinetic energy, that means only certain speeds are permitted for a particle 

The wave function of a particle in a box whose energy is En is                   

                        _____                   

 n = A sin ( 2mEn / h ) x    …………………………….(6) 

Substituting for En from Eqn (5) 

                      _______________ 

n = A sin (2m n2 2 h2 / 2mL2 ) / h ) x = A sin (n x / L)     ………..(7) 

n are called the ‘eigen functions’  corresponding to the energy eigen values En. 

These wave functions meet  all the requirements i) for each quantum number n, the wave function n 

is single valued function of x and   ii)n and   dn /dx are continuous. Applying the normalization 

condition between x = 0 and1, we have 

+                              L                                                                 L 

  n
2 dx =   A2 sin 2 (n x /L) dx = A2    (½)  ( 1 -- Cos 2 (n x /L) dx   

    -                               0                                                                 0                                   
L 

                             = (A2/2)   x – (L / 2 n) Sin 2(n x /L)  = (A2 /2 )(L) = A2 L / 2 

                                                                                            
0   

It is certain that the particle is somewhere inside the box. Hence for a normalized wave function     

                                                                                                                                                                                                      ______                                                                                                                                                             

____                          L                              L                                                                                                            ____ 

                              dx =      dx = 1    or     A2L / 2 = 1    or    A =   2 /L 
                                 0                            0 

         The normalized wave functions of the particle  in a box are 

                    ___ 

         n =  2/L   sin (nx /L )      n = 1,2,3, …….. 

The normalized wave functions 1, 2, 3… with the probability densities12, 2 
2, 3

2  are 

shown in Fig                                                                                     2  

                                                                       n                                 │n│ 
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   While n may be negative  as well as positive,n 
2 is always positive and since  n is 

normalized, its value at a given x is equal to the probability density P of finding the particle there. In 

every case n
2 = 0 at x = 0 and x = L, the boundaries of the box.                                                     

     We see that the lowest permitted energy  of the particle is not zero but that corresponds to n=1. 

This lowest energy  is called the zero point energy of the particle in the potential well 

 

       

 

9) Distinguish between Maxwell-Boltzman, Bose-Einstein and Fermi-Dirac 

statistics 
  Maxwell-Boltzman 

 

        Bose – Einstein statistics    Fermi – Dirac statistics 

Deals with a system of  

identical particles that are  

sufficiently  far apart to be 

distinguishable 

Deals with a system of identical  

particles that cannot be 

distinguished from one another 

Deals with a system of identical  

particles that cannot be 

distinguished from one another 

Deals with classical 

particles like molecules of 

a gas 

Deals with Bosons such as  

photons,  - particles, 

Deals with Fermions such as 

Electrons, protons , neutrons  

and neutrinos 

Particles of any spin     Particles of integral spin 

         0  h, 1h , 2 h , 3 h,…. 

Particles of half-integral spin 

      ½ h, (3/2) h, (5/2) h… 

No limit on the number of 

particles per state 

Does not obey Pauli Exclusion  

Principle. No limit on the 

number of particles  per state. 

The wave functions are 

symmetric to interchange  

of  a pair of  particles  

Obeys Pauli Exclusion  

principle. Not more than one 

particle per quantum state.  

Wave functions are  

antisymmetric to interchange 

 of pair of particles 

     

   fMB = A e --E / kT 

 

fBE = 1/  (A e E / kT -- 1 ) 

 

f FD = 1 /  e  ( E --  E
F

 ) / kT + 1 
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